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Similarity is used as an explanatory construct throughout psychology and multidimensional
scaling (MDS) is the most popular way to assess similarity. In MDS similarity is intimately
connected to the idea of a geometric representation of stimuli in a perceptual space. Whilst
connecting similarity and closeness of stimuli in a geometric representation may be intuitively
plausible, Tversky and Gati (1982) have reported data whichare inconsistent with the usual
geometric representations that are based on segmental additivity. We show that similarity
measures based on Shepard’s universal law of generalization (Shepard, 1987) lead to an in-
ner product representation in a reproducing kernel Hilbertspace. In such a space stimuli are
represented by their similarity to all other stimuli. This representation, based on Shepard’s
law, has a natural metric that does not have additive segments whilst still retaining the intuitive
notion of connecting similarity and distance between stimuli. Furthermore, this representation
has the psychologically appealing property that the distance between stimuli is bounded.
This is a preprint of an article that appeared in Journal of Mathematical Psychology 52(5)
297-303 (2008). The preprint may differ from the published version.

The most influential approach to model similarity has
been geometrical. The central idea in this approach is that
stimuli are represented in a perceptual space and the dis-
tance between stimuli in this space determines their simi-
larity. In the simplest case the space is assumed to be Eu-
clidean and the similarity of stimuli decreases with their dis-
tance in space. Multidimensional scaling (MDS) provides a
class of algorithms that make it possible to reconstruct the
coordinates in the putative perceptual space from similarity
data, for example similarity ratings or confusion probabili-
ties. Shepard (1987) argued that the best experimental mea-
sure for similarity are generalization gradients. He further
presented data that indicated that generalization gradients are
an exponential function of the distance in perceptual space.
This relationship between generalization gradients and per-
ceptual spaces is often referred to as Shepard’suniversal law
of generalization.

In a well-known series of papers Tversky and colleagues
have challenged the idea of a geometric representation
(Beals, Krantz, & Tversky, 1968; Tversky, 1977; Tversky
& Gati, 1982). They provided convincing evidence that
geometric representations cannot account for many human
similarity judgments. Even though their criticism has been
substantial, MDS has been used in practice with consider-
able success. Categorization models in particular have re-
lied heavily on geometric representations—seemingly un-
fazed by Tversky’s criticism (Nosofsky, 1986). In this note
we will reconcile Tversky’s critique with Shepard’s univer-

sal law of generalization. Read carefully, Tversky’s most
fundamental critique does not exclude the possibility of a
geometric perceptual space per se, it only attacks the com-
monly used metrics with additive segments (Tversky & Gati,
1982). This class, however, includes many intuitive geome-
tries: Euclidean spaces, spaces with a Minkowskip-norm,
and curved Riemannian geometries. We will introduce a rep-
resentation of the perceptual space that arises naturally from
Shepard’s law and that is not affected by Tversky’s criticism.
This representation has several psychologically interesting
properties: It does not have additive segments, it is bounded
and it represents stimuli by their similarity to all other stim-
uli (Edelman, 1998). Furthermore, it provides a deeper un-
derstanding of the constraints that Shepard’s law imposes on
data and on their embedding in a psychological space. The
representation that we suggest is based on the mathematical
theory of reproducing kernel Hilbert spaces that can be used
to model the similarity of stimuli as inner products.

Similarity

There have been early attempts to model similarity judg-
ments as inner products. Ekman (1954) made the assump-
tion that stimuli are represented in the mind as vectors in
a multidimensional Euclidean space and that the similarity
of points is given by their inner product (Gregson, 1975;
Borg & Groenen, 1997, both provide an overview on Ek-
man’s approach). A little earlier, Torgerson (1952) presented



a method that is now widely known as classical multidimen-
sional scaling. Instead of requiring a direct measurement of
similarity this method indirectly determined the dissimilarity
between stimuli by using the method of triads. Under the
assumption that dissimilarity is linear with distance in a Eu-
clidean space it is possible to reconstruct the coordinatesof
the stimuli in a perceptual space using a procedure that was
suggested by Young and Householder (1938).

There was no a priori reason to believe that mental rep-
resentations should be Euclidean. There was ever little rea-
son to believe that measurements of similarity or dissimilar-
ity were linearly related to the distance or the inner product
in a Euclidean space. In search for an alternative, Shepard
(1962) and Kruskal (1964) developed ordinal multidimen-
sional scaling methods that allow for arbitrary metrics and
for a non-linear relationship between distances in a metric
space and a so-called proximity measure. By proximity mea-
sure they referred to both, similarity or dissimilarity mea-
surements. The key idea is that a dissimilarity measure has
to be monotonically increasing with the distance in the met-
ric space and a similarity measure has to be monotonically
decreasing with the distance in the metric space. Their al-
gorithms only use ordinal properties of the data and allow
the convenient use of indirect measurements like confusion
probabilities and reaction times as a proximity measure. To-
day, the use of proximity measures that are monotonically
related to a metric is the prevailing approach and the idea
that similarity could be directly modeled as an inner product
has seemingly vanished. We argue, however, that inner prod-
ucts still deserve a place in theories of similarity. In fact,
we will show that inner products in the form of so-called
positive definite kernels have been used extensively without
being recognized as inner products. In order to do so some
common assumptions about mental representations and psy-
chological distance will be made explicit in the following.

Psychological space and distance

It is tempting to assume that the representation of a stim-
ulus is given as a point in a vector space. The dimensions of
the vector space ought to describe the perceptual dimensions
along which stimuli can vary. With respect to the norm in this
space it has become customary to use a weightedℓp norm for
the length of an-dimensional vectorx:
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with positive weightsαi . The weights are needed to allow for
systematic variations of the norm over tasks or over individ-
uals. This norm induces a metric on the space (which is also
known as the Minkowskip-metric or power model):
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On a first glance, this metric seems to be an ad-hoc choice
but it is implied by a set of desirable axioms that include the

metric axioms, segmental additivity and conditions on the
dimensions and the combination of dimensions (Tversky &
Krantz, 1970).

The ℓp formula is a norm and induces a metric only for
p ≥ 1. For p < 1 equation (2) does not fulfill the trian-
gle inequality—an issue that is crucial for psychology and
that will be discussed below. Irrespective of whetherdp is a
metric or not we will call it a distance (Blumenthal, 1953).
We will only call it a metric if it also satisfies the triangle
inequality (i.e. forp ≥ 1). A long list of studies used the
ℓp norm either directly or in the form of the Euclidean or
city-block metric, that is withp = 2 or p = 1, respectively
(Attneave, 1950; Shepard, 1964; Garner, 1974; Nosofsky,
1986; Kruschke, 1992; Love, Medin, & Gureckis, 2004).

Generalization gradients

If one is willing to commit oneself to a vectorial represen-
tation of stimuli and the distancedp on this space there is still
the question of how the distance in this space relates to the
measured (dis)similarity of the stimuli. Intuitively, similarity
should decrease and dissimilarity increase with distance.

Shepard (1987) argued that the best measure for similarity
are generalization gradients. He analyzed several data-sets
with his ordinal multidimensional scaling method and found
that the non-linear relationship between the distance in the
psychologicalℓp space and the measured similarity is gener-
ally monotonic and, in Shepard’s terms, concave upward. In
its stronger version Shepard’s claim is that the relationship
is exponentially decreasing. We refer to this exponential re-
lationship as the universal law of generalization. Shepard’s
finding was in accordance with his much earlier suggestion
of the exponential as a link between confusion probabilities
and psychological distance (Shepard, 1957) and his diffusion
model of similarity (Shepard, 1958). Furthermore, he triedto
deduce the exponential from assumptions on optimal classifi-
cation performance (Shepard, 1987; Tenenbaum & Griffiths,
2001; Chater & Vitanyi, 2003). Shepard’s work has been
extremely influential and has led others to use the exponen-
tial law (Nosofsky, 1986; Kruschke, 1992; Love et al., 2004,
e.g.). In this framework, a very general formulation for the
similarity between two representationsx andy is:

k(x, y) = exp(−dp(x, y)q), (3)

an exponential of the distancedp (2) raised to the power of
q. Shepard’s original formulation did not have the exponentq
but other authors make use of this extra parameter (Nosofsky,
1990; Ashby & Maddox, 1993).

Kernels

Under certain circumstances the similarity measure as
given by (3) is a so-called positive definite kernel and there-
fore opens up the rich theory of Hilbert spaces for the anal-
ysis of similarity. A complete and possibly infinite dimen-
sional vector space with an inner product is called a Hilbert
space. We will describe such a Hilbert space that is as-
sociated with Shepard’s universal law of generalization but
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we will not give a detailed introduction to the mathemat-
ics involved—a tutorial introduction that makes connections
to the machine learning and neural networks literature can
be found in a companion paper (Jäkel, Schölkopf, & Wich-
mann, 2007). Our brief discussion here follows Schölkopf
and Smola (2002), leaving out many of the technical details.

A positive definite similarity function

A real and symmetric functionk(·, ·) is called a positive
definite kernel if for all choices ofN points x1, ..., xN from
the domain ofk, the following holds:

N
∑

i=1

N
∑

j=1

wiw jk(xi , x j) ≥ 0 (4)

for all possible real coefficientswi . If k is a psychological
similarity function and thexi are stimuli this means that for
all possible stimuli the matrix of pairwise similarities isal-
ways positive semi-definite.

The real and symmetric functionk(x, y) as given in (3) is
such a positive definite kernel only for certain choices ofq
andp. For the current discussion it is enough to first restrict
attention to the simpler caseq = p:

k(x, y) = exp(−dp(x, y)p) = exp(−
n
∑

i=1

αi |xi − yi |p). (5)

Theq = p case becomes what Nosofsky (1990) called “in-
terdimensional multiplicative” because similarities arecal-
culated for each dimension and then multiplied. Withp cho-
sen to be two the similarity measure has the form of a Gaus-
sian kernel. Withp chosen to be one the function is some-
times called Laplacian. These two cases correspond to the
Euclidean and the city-block metric, respectively. Figure1
shows the similarity kernel forp = 2, p = 1 andp = 1

2.
Contrary to the Gaussian kernel the other two kernels have
clearly defined axes.

While the Minkowskip-metric (2) only defines a metric
for p ≥ 1 the similarity measure in (5) is a positive definite
kernel for 0< p ≤ 2. This is a classic result on positive defi-
nite kernels (Schoenberg, 1938). We can even give a slightly
more general result for the case whereq does not equalp
(Schoenberg, 1938, using Corollary 2). Forp ≤ 2 Eq. (3)
is a positive definite kernel if 0< q ≤ p. The conditions
for p > 2 are more complicated but known results are sum-
marized by Koldobsky and Koenig (2001). To the best of
our knowledge there is no paper in psychology that claims
a value forp bigger than two. Thus, concentrating on the
case wherep ≤ 2 appears to be no serious restriction. Note
that the most interesting cases of the similarity kernel that
have been reported in the literature are all positive definite.
The Laplacian kernel (q = p = 1) and the Gaussian kernel
(q = p = 2) are positive definite but also Shepard’s original
suggestion withq = 1 andp = 2.

For the rest of the paper we will concentrate on the case
q = p and especially on the case wherep < 1 because

there are several reports for ap smaller than one in the lit-
erature (Shepard, 1964; Tversky & Gati, 1982; Indow, 1994;
Lee, 2008). In these cases trying to model similarity with a
Minkowski metric is problematic because (2) is not a met-
ric if p < 1—but the axioms of a metric space have been
essential in the development of MDS and in the interpreta-
tion of results. The similarity measure in (5) is, however,
still a positive definite kernel for 0< p < 1 and therefore
the kernel framework might provide us with an alternative
interpretation.

Reproducing kernel Hilbert space

We have observed that the above measure for similarity
is a positive definite kernel. We will now introduce a vector
space using this positive definite kernel as an inner product.
Let us assume, for simplicity, that the perceptual space isR

n.
The vector spaceH that will be constructed below is a space
of real functions defined on the perceptual space, that is a
function f in the vector spaceH is of the form f : R

n→ R.
The crucial idea is that we associate each stimulus with

its similarity to all other stimuli (Edelman, 1998). For each
stimulusx in the perceptual space there is a function from
R

n to R that captures the similarity ofx to all other stimuli
in the perceptual space. This function isk(·, x) with a fixed
x and interpreted as a function of its first argument. This
function lies in the vector spaceH that we will construct.
In this way, we associate each stimulusx in the perceptual
space with a function, its similarity function, inH . Instead
of examining the perceptual space directly we will analyze
the space of functionsH that is defined on the perceptual
space and that contains all the similarity functions associated
with each stimulus. It will turn out that this space has psycho-
logically interesting properties. We will denote the function
that maps each stimulus to its similarity function inH with
Φ : R

n→ H and define it to be

Φ(x) = k(·, x). (6)

The vector spaceH is now defined to be the set of functions
that can be described as a finite linear combination of simi-
larity functions. Each functionf in H , by definition, can be
written as

f (x) =
N
∑

i=1

wik(x, xi) (7)

for someN and a choice of pointsx1, ..., xN with real co-
efficientsw1, ...,wN . It is no coincidence that this equation
looks like a one-layer neural network (Jäkel et al., 2007), and
because it is a linear combination of kernel functions these
functions form a vector space.

There is a natural way to equip this vector space with an
inner product. Letg(x) =

∑M
i=1 vik(x, yi) be another function

from the vector space. An inner product between these func-
tions can be defined as

〈 f , g〉 =
N
∑

i=1

M
∑

j=1

wiv jk(xi , y j). (8)
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Figure 1. The similarity kernel for different values ofp. From left to right: Forp = 2 a Gaussian is obtained, forp = 1 a Laplacian is
obtained, and forp = 1

2 the axes are very prominent.

This can be shown to be well-defined and it is symmetric due
to the symmetry ofk. It is linear in its arguments, too, due to
the linearity of the sum. To show that it is an inner product
we need to make sure that it is also positive definite, that
is 〈 f , f 〉 ≥ 0 and equality only holds forf = 0. Positivity
is guaranteed by the defining property of a positive definite
kernelk (4). Definiteness follows automatically for positive
definite kernels but is a bit more difficult to see (Schölkopf &
Smola, 2002).

The vector space with the inner product that we introduced
is almost a Hilbert space. Hilbert spaces can be thought of
as a generalization of Euclidean spaces with a dimension that
may be infinite. In order to be a Hilbert space the space needs
to be complete, and the space we constructed can be com-
pleted by including certain limit points (Schölkopf & Smola,
2002). This completed space is then called areproducing
kernel Hilbert space(RKHS). It is called “reproducing” be-
cause of the following property,

〈k(·, x), f 〉 =
N
∑

i=1

wik(x, xi) = f (x), (9)

stating that the inner product between a functionf and one
of the similarity functionsk(·, x) evaluates the function at
x. Hence, when we take the inner product of two similarity
functions

〈k(·, x), k(·, y)〉 = k(x, y), (10)

the functionk(·, y) is evaluated atx.
Remember that in Eq. (6) we decided to map each stim-

ulus x to the vector space by applying the functionΦ(x) =
k(·, x). Because of the reproducing property (10) the inner
product of two stimulix andy in the RKHS is given by their
similarity:

〈Φ(x),Φ(y)〉 = 〈k(·, x), k(·, y)〉 = k(x, y). (11)

Calculating the similarity between two stimuli using a pos-
itive definite kernelk as given in (5) is therefore the same
as taking the inner product in the Hilbert space that we con-
structed above. The similarity is given by an inner product as
in the early work of Ekman (Ekman, 1954; Gregson, 1975;
Borg & Groenen, 1997). Ironically, Shepard’s suggestion to
use the exponential as a link between distance and similarity

has brought us back to the roots of MDS, the use of inner
products.

The kernel metric

Like Euclidean space Hilbert space is a very rich structure
with an inner product, a norm that is induced by the inner
product and a metric that is induced by the norm. The norm
of a functionf in the Hilbert space is naturally defined as the
square root of the inner product with itself‖ f ‖2 = 〈 f , f 〉. In
particular, for the similarity kernel (5) all stimuli are mapped
to the unit sphere in Hilbert space:

‖Φ(x)‖2 = 〈Φ(x),Φ(x)〉 = k(x, x) = exp(0)= 1. (12)

As all the points of the input space lie on the unit sphere in
the Hilbert space the inner product is the cosine of the angle
between the vectors in the Hilbert space.

Given a norm a natural definition of a metric is the norm
of the difference vector. In the Hilbert space the distance
between two functionsf andg would then be given by the
metric d̃p defined asd̃p = ‖ f − g‖. Hence, the inner product
in Hilbert space naturally induces a metric on the space via
the norm:

d̃p(x, y)2 = ‖Φ(x) − Φ(y)‖2

= 〈Φ(x) −Φ(y),Φ(x) −Φ(y)〉
= 〈Φ(x),Φ(x)〉 − 2 〈Φ(x),Φ(y)〉 + 〈Φ(y),Φ(y)〉
= 2− 2k(x, y)

= 2− 2 exp(−dp(x, y)p) (13)

where we have used that the similarity kernelk(x, x) = 1
for all x. It is instructive to note that this new metric is a
monotonic transform ofdp. In the Shepard-Kruskal multi-
dimensional scaling procedure only ordinal properties of the
data are used and therefore this new metric space is as good a
representation for ordinal data as theℓp space on which it is
based. There are of course many more metric spaces that will
do the same but do not have the structure of a Hilbert space.
For some metric spaces there is no monotone metric trans-
form such that they can be embedded into a Hilbert space, so
it is not completely trivial to note that we can obtain a Hilbert
space representation here (Lew, 1978).
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Contrary todp the new metric is bounded from above.
Points far apart in the space are separated by a distance which
is at most

√
2. Psychologically this is an interesting property

because it means that a stimulus that is already very differ-
ent from another stimulus cannot become much more differ-
ent. In fact, very often the notions of perceptual difference
and similarity are only meaningful locally and measurements
of large perceptual distances are not available. An example
would be color space where it is easy to obtain local measure-
ments of similarity, for instance by looking at discrimination
thresholds. However, global measures are not easily avail-
able. If directly asked for a judgment of the dissimilarity of
colors far apart in color space, typically subjects find them-
selves unable to express a more precise answer than “totally
different” (Indow, 1994).

Triangle inequality

With regard to modeling perceptual similarity, it may
seem that the kernel metric inherits all problems of the dis-
tancedp on which it is based. Perhaps the problems may
even seem worse because of the assumptions of the Hilbert
space—but this is not so. Of course, the kernel metric fulfills
the metric axioms and they have been subject to consider-
ably criticism (Tversky, 1977). In some cases the empirical
dissimilarity from a point to itself may not be zero and the
symmetry of the dissimiliarities is not warranted. These vi-
olations may not always be explained by measurement noise
and response biases. Symmetry, for example, can be vio-
lated if the comparison has a direction and one of the stimuli
is more prototypical than the other, or receives more atten-
tion. Checking for violations of symmetry is relatively easy
and even if an experimental measure is not completely sym-
metric, in practice it is often simply forced to be symmetric.
Similarly, constant self-similarity is simply assumed in prac-
tice. In any case, whether one’s data show symmetry and
constant self-similarity, at least approximately, can easily be
checked. The situation is not so simple for the triangle in-
equality. As dissimilarity measurements are usually only on
an ordinal level, at most on an interval scale, for a finite setof
points the triangle inequality can always be trivially satisfied
by adding a big enough constant to the dissimilarity mea-
surements. Hence, experimentally the triangle inequalitycan
only be tested in conjunction with additional assumptions.

Tests of the triangle inequality

Assuming theℓp norm, Shepard noted that concave (i.e.,
indented) iso-similarity contours lead to a violation of the
triangle inequality (Shepard, 1964). Figure 2 shows the unit
“balls” for the ℓp norm for different values ofp assuming
equal weights for both dimensions. All points on the curves
have distance one to the center (in their respective norms).
Figure 3 shows why the triangle inequality is not fulfilled for
values ofp < 1. Forp < 1 the unit ball becomes concave. In
this case, the distance fromx to y is one, the distance fromy
to z is also one. Therefore, traveling fromx to z via y takes
two units but traveling directly, that is on a straight line,from
x to z takes more than two units (the distance fromx to w is

0.5

1

2

4

Figure 2. Unit balls of theℓp norm for different values ofp.

greater than one and the distance fromz to w is also greater
than one). Psychologically, one would expect indented iso-
similarity curves if subjects based their similarity judgments
on matching dimensions. In his experiments Shepard found
violations of the triangle inequality but he could attribute
them to pooling subjects with different response strategies.

Tversky and Gati (1982) conducted a study that tested
the triangle inequality (and matching behavior) more di-
rectly than Shepard (1964) did. Instead of assuming theℓp
norm they could devise testable predictions by only assuming
the weaker assumption of segmental additivity (Beals et al.,
1968; Blumenthal, 1953) in addition to the triangle inequal-
ity. By segmental additivity they meant the following: All
pairs of pointsx andz can be joined by a segment (e.g., a
straight line if the space is Euclidean) such that for any point
w that is on the path betweenx anz the distance fromx to z is
exactly the sum of the distances fromx to w and fromw to z,
d(x, z) = d(x,w) + d(w, z). Implicitly we made this assump-
tion above when we demonstrated that the distancedp (2)
does not fulfill the triangle inequality forp < 1. The assump-
tion of segmental additivity is so intuitive that if it were to be
given up the whole idea of representing similarity by geo-
metric relations in a psychological space would seem to lose
its intuitive appeal. Metrics with segmental additivity are a
rather wide class of metrics. They include all Minkowski
metrics (dp with p ≥ 1) and Riemannian curved geometries.
Segmental additivity is one of the basic intuitions underlying
MDS (Beals et al., 1968) and other, more recent embedding
methods (Roweis & Saul, 2000; Tenenbaum, Silva, & Lang-
ford, 2000). Tversky and Gati found however that metrics
with additive segments cannot account for their data.
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x
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w

Figure 3. Violation of the triangle inequality for concave unit
balls. The distances fromx to y and fromy to z are 1. Hence,
traveling fromx to z via y takes 2 units. Traveling fromx to z di-
rectly viaw takes more than 2 units asw is outside the unit balls of
x andz.

Metrics without segmental additivity

These results have led Tversky and Gati, and many re-
searchers after them, to prefer non-metric models of similar-
ity. The contrast model (Tversky, 1977) is the most promi-
nent example. Nevertheless, Tversky and Gati do acknowl-
edge that the triangle inequality on its own is not constrain-
ing the class of similarity models very much. There are many
metric models without segmental additivity that can be rec-
onciled with their data, for example, the so-called “metricfor
bounded response scales” (Borg & Groenen, 1997). Another
such metric was suggested by Tversky and Gati themselves
and is given by theℓp formula (2) taken to the power ofp,
which results in a metric for 0< p ≤ 1, as already noted by
Carroll and Wish (1974). Tversky and Gati (1982, p. 151)
therefore conclude that the choice between non-metric mod-
els and metrics without segmental additivity is “more likely
to be made on the basis of theoretical rather than empirical
considerations”. The kernel metric̃dp (13) that we intro-
duced above is theoretically well-motivated by Shepard’s law
and also does not fulfill segmental additivity. Thus, the ker-
nel metric may provide a theoretically well-founded metric
alternative to the non-metric models that Tversky and Gati
favor.

Note that the exponent in the definition of the kernel (5) is
the pth power ofdp. The iso-similarity curves of the kernel
metric are identical to the iso-similarity curves of theℓp norm
(Figure 2) because the same value for theℓp formula im-
plies the same distance in the kernel metric. Contrary to the

Figure 4. The similarity kernel maps the stimulix, w andz from
Figure 3 to the unit sphere in a Hilbert space. The distance from x to
z is smaller than the sum of the distances fromx to w and fromw to
z. The metric does not have additive segments in the original space
because the distances are computed by the shortest connection in
Hilbert space (the dotted lines).

ℓp norm, the kernel metric can have indented iso-similarity
curves and is therefore compatible with the data by Shepard
(1964) and Tversky and Gati (1982). For a metric with in-
dented unit balls it is exceedingly difficult to interpret a con-
figuration of stimuli as depicted in Figure 3 as a map or any
other intuitive geometry, “despite the natural tendency todo
so” (Tversky & Gati, 1982, p. 151). However, as the kernel
metric is a metric that is derived from an inner product we
may use some of our Euclidean intuitions in its analysis.

The metricd̃p leads to segmental additivity in a higher
dimensional space. The points in the psychological space
are mapped to the unit sphere in the infinite dimensional
Hilbert space (12). In Figure 4 we have depicted a three
dimensional subspace that contains the pointsx, w and z
from Figure 3 mapped to the Hilbert space using the map-
pingΦ(x) = k(·, x). The locations of the three points in the
figure are calculated from their inner products (that are given
by the similarity kernel) such that the distance in RKHS is
the same as the Euclidean distance in the three-dimensional
space that is depicted. The metricd̃p is the metric of the
Hilbert space in which the original psychological space is
embedded and therefore the distance between two points is
given by the chord that joins them (the dotted lines). Note
that in the embedding spacew is not on the way fromx to
z, it even lies in a different dimension in Figure 4. This
is because any kernel matrix for Shepard’s law will always
have full rank, if no two points are identical. In fact, none
of the points that lie on the chord that joinsx andz can be
a potential stimulus because we know that all stimuli from
the original space lie on the unit sphere when mapped to the
Hilbert space (12). Hence, segmental additivity does not hold
in the original psychological space which is the one depicted
in Figure 3 and also the one that Tversky and Gati examined.
It is as if you can take a shortcut through the sphere in order
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to get to another stimulus. You do not have to visit any other
stimuli on the way. Any visit to another stimulus implies a
detour. Hence, no two distinct pointsx andz in the original
space can be joined by an additive segment in the original
space because for all other pointsw in the original space it
holds thatd̃p(x, z) < d̃p(x,w) + d̃p(w, z).

Normally in MDS, if the stimulus space has a smaller di-
mension than the embedding space then the stimuli that are
presented to a subject will fall onto a (non-linear) submani-
fold in the embedding space. The manifold has the dimen-
sion of the stimulus space. A simple example for this is
the color circle (Shepard, 1980). If an experimenter chooses
the one-dimensional set of stimuli that is comprised of only
monochromatic lights then these stimuli will have to be em-
bedded on a circle in two dimensions. The distance is given
by the direct connection in the embedding space and not by
the shortest path on the stimulus manifold (that only consists
of monochromatic lights). In such a case it is no surprise
that the metric does not fulfill segmental additivity when
only the subset of monochromatic lights is considered. This
chordal metric is in fact the standard example for a metric
without additive segments (Beals et al., 1968). The kernel
metric we have presented here is very similar to this exam-
ple, it represents each stimulus on the unit sphere in a (high-
dimensional) Hilbert space.1

Discussion

We have demonstrated how concerns about the triangle
inequality that accompany all metric models of similarity
can be addressed in a principled manner. It was important
to remember that the experimental tests of the triangle in-
equality that Tversky and Gati (1982) reported were always
in conjunction with a second assumption: segmental additiv-
ity. Shepard’s law of generalization can be used to induce
an inner product in a Hilbert space which in turn induces a
metric with several psychologically appealing properties. It
does not have additive segments and can be made consis-
tent with the data by Tversky and Gati by choosing concave
iso-similarity contours. It is also bounded from above and
captures the intuition that similarity makes the most sense
locally with only small changes in the stimulus. Stimuli far
apart in perceptual space are merely completely different and
more precise judgments of similarity are difficult.

There are other ways to address concerns about the tri-
angle inequality for similarity. Within the framework of
Minkowski metrics one could imagine that attention shifts
and fluctuations not only occur over subjects and experimen-
tal contexts but also from trial to trial, possibly depending
on the stimuli under consideration in each trial. Match-
ing effects could thus be incorporated by giving matching
dimensions a greater weight in the metric. Such attention
shifts and fluctuations have frequently been suggested to ac-
count for non-metricity in metric models (Shepard, 1964;
Micko & Fischer, 1970; Nosofsky, 1986; Tversky & Gati,
1982; Laub & Müller, 2004). Another suggestion has been
to include spatial density as a factor in similarity judgments
(Krumhansl, 1978). In contrast to all the metric models that

one could entertain, the contrast model abandons the metric
axioms altogether and directly tries to model matching be-
havior (Tversky, 1977).

Recently, Dzhafarov and Colonius (2007) have presented
Dissimilarity Cumulation Theory as a principled way of con-
structing a metric from non-metric dissimilarity measure-
ments. The major application of this theory has been to dis-
crimination probabilities. However, also dissimilarity ratings
of the kind considered by Tversky and Gati (1982) could po-
tentially be used in their construction (Dzhafarov & Colo-
nius, 2007, p.291). In addition, in an earlier work (Dzha-
farov & Colonius, 2006) some of Shepard’s generalization
gradients have been analyzed and this led to a metric with-
out additive segments, consistent with the metric suggested
here. Here we have somehow naively assumed that similar-
ity measurements as obtained by generalization gradients or
by direct similarity ratings are monotonically related to each
other. But the link may be more complicated and perhaps
indented iso-similarity contours only occur for direct simi-
larity judgments and not for generalization gradients (Nosof-
sky, 1986). Other connections between different operational-
izations of similarity could be formalized within Dissimilar-
ity Cumulation Theory. Dissimilarity Cumulation Theory is
also sufficiently general to be able to deal with asymmetry
and non-constant self-similarity, both of which we have ne-
glected here.

In any case, the similarity component of many successful
categorization models does assume Shepard’s law (Nosof-
sky, 1986; Kruschke, 1992; Love et al., 2004, e.g.). There is
a close correspondence between kernel methods, as they are
used in machine learning and statistics, and exemplar mod-
els of categorization (Ashby & Alfonso-Reese, 1995; Jäkel,
Schölkopf, & Wichmann, 2008). It is, in fact, this corre-
spondence that motivated this work. One should expect that
matching effects like (Tversky & Gati, 1982) observed play
a role in categorization, too. (Nosofsky, 1986) did not find
it necessary to incorporate matching effects for his highly
confusable stimuli. Nevertheless, it has been suggested that
matching behavior should be incorporated into models of cat-
egorization (Verguts, Ameel, & Storms, 2004). This can be
done in exemplar models by settingp < 1. If p is simply seen
as a free parameter of the exemplar model it will be hardly
surprising that this can be done. However, it is perhaps inter-
esting to note that it can be done without giving up the metric
axioms.
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