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Similarity is used as an explanatory construct throughaychpology and multidimensional
scaling (MDS) is the most popular way to assess similarityMDS similarity is intimately
connected to the idea of a geometric representation of Btimea perceptual space. Whilst
connecting similarity and closeness of stimuli in a geofoeapresentation may be intuitively
plausible, Tversky and Gati (1982) have reported data waiehinconsistent with the usual
geometric representations that are based on segmentaivigldiWe show that similarity
measures based on Shepard’s universal law of generafizgitwepard, 1987) lead to an in-
ner product representation in a reproducing kernel Hilbpace. In such a space stimuli are
represented by their similarity to all other stimuli. Thipresentation, based on Shepard’s
law, has a natural metric that does not have additive segmitst still retaining the intuitive
notion of connecting similarity and distance between slinkurthermore, this representation
has the psychologically appealing property that the desidretween stimuli is bounded.

This is a preprint of an article that appeared in Journal of fdlamatical Psychology 52(5)
297-303 (2008). The preprint may/fdir from the published version.

The most influential approach to model similarity hassal law of generalization. Read carefully, Tversky’'s most
been geometrical. The central idea in this approach is thatundamental critique does not exclude the possibility of a
stimuli are represented in a perceptual space and the digeometric perceptual space per se, it only attacks the com-
tance between stimuli in this space determines their simimonly used metrics with additive segments (Tversky & Gati,
larity. In the simplest case the space is assumed to be Ed982). This class, however, includes many intuitive geome-
clidean and the similarity of stimuli decreases with thésrd tries: Euclidean spaces, spaces with a Minkowskiorm,
tance in space. Multidimensional scaling (MDS) provides aand curved Riemannian geometries. We will introduce a rep-
class of algorithms that make it possible to reconstruct theesentation of the perceptual space that arises naturatty f
coordinates in the putative perceptual space from sirtylari Shepard’s law and that is noffacted by Tversky’s criticism.
data, for example similarity ratings or confusion probiabil This representation has several psychologically intergst
ties. Shepard (1987) argued that the best experimental meproperties: It does not have additive segments, it is bodinde
sure for similarity are generalization gradients. He farth and it represents stimuli by their similarity to all otheinst
presented data that indicated that generalization gresteea  uli (Edelman, 1998). Furthermore, it provides a deeper un-
an exponential function of the distance in perceptual spacelerstanding of the constraints that Shepard’s law impoges o
This relationship between generalization gradients amd pedata and on their embedding in a psychological space. The
ceptual spaces is often referred to as Shepartigersal law  representation that we suggest is based on the mathematical
of generalization theory of reproducing kernel Hilbert spaces that can be used

In a well-known series of papers Tversky and colleague$o model the similarity of stimuli as inner products.
have challenged the idea of a geometric representation
(Beals, Krantz, & Tversky, 1968; Tversky, 1977; Tversky Similarity
& Gati, 1982). They provided convincing evidence that
geometric representations cannot account for many human There have been early attempts to model similarity judg-
similarity judgments. Even though their criticism has beenments as inner products. Ekman (1954) made the assump-
substantial, MDS has been used in practice with considetion that stimuli are represented in the mind as vectors in
able success. Categorization models in particular have rex multidimensional Euclidean space and that the similarity
lied heavily on geometric representations—seemingly unef points is given by their inner product (Gregson, 1975;
fazed by Tversky’s criticism (Nosofsky, 1986). In this note Borg & Groenen, 1997, both provide an overview on Ek-
we will reconcile Tversky’s critique with Shepard’s univer man’s approach). A little earlier, Torgerson (1952) présén



a method that is now widely known as classical multidimen-metric axioms, segmental additivity and conditions on the
sional scaling. Instead of requiring a direct measurement odimensions and the combination of dimensions (Tversky &
similarity this method indirectly determined the dissianity ~ Krantz, 1970).
between stimuli by using the method of triads. Under the The ¢, formula is a norm and induces a metric only for
assumption that dissimilarity is linear with distancein&E p > 1. Forp < 1 equation (2) does not fulfill the trian-
clidean space it is possible to reconstruct the coordiraftes gle inequality—an issue that is crucial for psychology and
the stimuli in a perceptual space using a procedure that wahat will be discussed below. Irrespective of whettigis a
suggested by Young and Householder (1938). metric or not we will call it a distance (Blumenthal, 1953).
There was no a priori reason to believe that mental repWe will only call it a metric if it also satisfies the triangle
resentations should be Euclidean. There was ever little reanequality (i.e. forp > 1). A long list of studies used the
son to believe that measurements of similarity or dissimila ¢, norm either directly or in the form of the Euclidean or
ity were linearly related to the distance or the inner praduccity-block metric, that is withp = 2 or p = 1, respectively
in a Euclidean space. In search for an alternative, Shepar@ttneave, 1950; Shepard, 1964; Garner, 1974; Nosofsky,
(1962) and Kruskal (1964) developed ordinal multidimen-1986; Kruschke, 1992; Love, Medin, & Gureckis, 2004).
sional scaling methods that allow for arbitrary metrics and o ]
for a non-linear relationship between distances in a metriéseneralization gradients
space and a so-called proximity measure. By proximity mea-
sure they referred to both, similarity or dissimilarity mea
surements. The key idea is that a dissimilarity measure h
to be monotonically increasing with the distance in the met-
ric space and a similarity measure has to be monotonicall

decreasing with the distance in the metric space. Their al L
gorithms only use ordinal properties of the data and allow Shepard (1987) argued that the best measure for similarity

the convenient use of indirect measurements like confusiofi’€ 9eneralization gradients. He analyzed several déa-se

probabilities and reaction times as a proximity measure. ToVith his ordinal multidimensional scaling method and found
day, the use of proximity measures that are monotonicall hat the non-linear relationship between the distance én th

related to a metric is the prevailing approach and the ide sychological’, space and the measured similarity is gener-

that similarity could be directly modeled as an inner pr(lducaIIy monotonic and, in Shepard's terms, concave upward. In

has seemingly vanished. We argue, however, that inner proélt-S stronger_version Shepard’s claim is tha_t the relatitr_nsh
ucts still deserve a place in theories of similarity. In fact Is exponentially decreasing. We refer to this exponenial r

we will show that inner products in the form of so-called lationship as the universal law of generalization. Shelpard

positive definite kernels have been used extensively witho finding was in a_ccordanpe with his much eqrher suggestion
f the exponential as a link between confusion probalslitie

being recognized as inner products. In order to do so som@ X ; X
common assumptions about mental representations and psﬁ-]d psychological distance (Shepard, 1957) and fission

chological distance will be made explicit in the following. odel of similarity (Shepard, 1958). F_urthermore_, he ttaed .
deduce the exponential from assumptions on optimal classifi

Psychological space and distance cation performance (Shepard, 1987; Tenenbaum &i@s,
) ) ) ~2001; Chater & Vitanyi, 2003). Shepard’s work has been
Itis tempting to assume that the representation of a stimextremely influential and has led others to use the exponen-
ulus is given as a point in a vector space. The dimensions afa| Jaw (Nosofsky, 1986; Kruschke, 1992; Love et al., 2004,

the vector space ought to describe the perceptual dimensiog g ). In this framework, a very general formulation for the
along which stimuli can vary. With respectto the normin this S|m||ar|ty between two representatiomandy is:

space it has become customary to use a weigft@drm for

If one is willing to commit oneself to a vectorial represen-
%\tion of stimuli and the distanak on this space there is still

at e question of how the distance in this space relates to the
easured (dis)similarity of the stimuli. Intuitively, silarity

hould decrease and dissimilarity increase with distance.

the length of an-dimensional vectox: k(x,y) = expdp(x, y)%), (3)
n o C an exponential of the distanck (2) raised to the power of
X, = Z ai % P| . (1)  q. Shepard’s original formulation did not have the exporment
i=1

but other authors make use of this extra parameter (Nosofsky

with positive weightsy. The weights are needed to allow for 1990; Ashby & Maddox, 1993).
systematic variations of the norm over tasks or over individ
uals. This norm induces a metric on the space (which is also Kernels

known as the Minkowskp-metric or power model): Under certain circumstances the similarity measure as

given by (3) is a so-called positive definite kernel and there
@) fore opens up the rich theory of Hilbert spaces for the anal-

ysis of similarity. A complete and possibly infinite dimen-

sional vector space with an inner product is called a Hilbert
On a first glance, this metric seems to be an ad-hoc choicgpace. We will describe such a Hilbert space that is as-
but it is implied by a set of desirable axioms that include thesociated with Shepard’s universal law of generalization bu

1
P

dp(x.Y) = IIX = Vil = (Z ai 1% —yi|p)
i=1



we will not give a detailed introduction to the mathemat-there are several reports forpasmaller than one in the lit-
ics involved—a tutorial introduction that makes conneasio erature (Shepard, 1964; Tversky & Gati, 1982; Indow, 1994;
to the machine learning and neural networks literature cahee, 2008). In these cases trying to model similarity with a
be found in a companion paper (Jakel, Schélkopf, & Wich-Minkowski metric is problematic because (2) is not a met-
mann, 2007). Our brief discussion here follows Schélkopfric if p < 1—but the axioms of a metric space have been
and Smola (2002), leaving out many of the technical detailsessential in the development of MDS and in the interpreta-

tion of results. The similarity measure in (5) is, however,
A positive definite similarity function still a positive definite kernel for & p < 1 and therefore

) ) ] N the kernel framework might provide us with an alternative
A real and symmetric functiok(, ) is called a positive  nterpretation.

definite kgrnel if for all choices oN pointsx, ..., Xy from
the domain ok, the following holds: Reproducing kernel Hilbert space

i=1 j

wiw;K(xi, Xj) > 0 (4) is a positive definite kernel. We will now introduce a vector
space using this positive definite kernel as an inner product
Let us assume, for simplicity, that the perceptual spa€.is
for all possible real ca@icientsw;. If k is a psychological The vector spacgf that will be constructed below is a space
similarity function and the; are stimuli this means that for of real functions defined on the perceptual space, that is a
all possible stimuli the matrix of pairwise similaritiesas  function f in the vector spacg{ is of the formf : R" — R.
ways positive semi-definite. The crucial idea is that we associate each stimulus with
The real and symmetric functidifx, y) as given in (3) is its similarity to all other stimuli (Edelman, 1998). For éac
such a positive definite kernel only for certain choicegjof stimulusx in the perceptual space there is a function from
andp. For the current discussion it is enough to first restrictR" to R that captures the similarity of to all other stimuli
attention to the simpler casg= p: in the perceptual space. This functiorki{s x) with a fixed
x and interpreted as a function of its first argument. This
: function lies in the vector spac# that we will construct.
k(X y) = exp(-dy(x,y)?) = expt- Z @l =yil"). () |n this way, we associate each stimubkign the perceptual
i=1 space with a function, its similarity function, i#. Instead
of examining the perceptual space directly we will analyze
the space of functiong{ that is defined on the perceptual

N We have observed that the above measure for similarity
=1

Theqg = p case becomes what Nosofsky (1990) called “in-

terdimensional multiplicative” because similarities az- space and that contains all the similarity functions asdedi

culated for each dimension and then multiplied. Wottho- wFi)th each stimulus. It will turn out that th);s space has p®ych

sen to be two the similarity measure has the form of a Gaus - . 1S . tiS Sp P®y
ogically interesting properties. We will denote the funat

sian kemel. Withp chosen to be one the function is SOME- 1 at maps each stimulus to its similarity functionifiwith
times called Laplacian. These two cases correspond to the P L y
: R" — H and define it to be

Euclidean and the city-block metric, respectively. Figlire
shows the similarity kernel fop = 2, p = 1 andp = %
Contrary to the Gaussian kernel the other two kernels have
clearly defined axes.

While the Minkowskip-metric (2) only defines a metric

D(X) = k(. X). (6)

The vector spac#{ is now defined to be the set of functions
that can be described as a finite linear combination of simi-

for p > 1 the similarity_m_easure in_ (G)isa pOSi“V.e_ definit_e larity functions. Each functiori in #, by definition, can be
kernel for 0< p < 2. This is a classic result on positive defi- |\ itan as

nite kernels (Schoenberg, 1938). We can even give a slightly N
more general result for_ the case whereoes not equap f(x) = Zwik(x’ ) (7
(Schoenberg, 1938, using Corollary 2). o 2 Eq. (3) =1
is a positive definite kernel if &< g < p. The conditions for someN and a choice of points ith |
for p > 2 are more complicated but known results are sum-__ > ; POINIKy, ..., Xy With real co-
marized by Koldobsky and Koenig (2001). To the best ofeflicientswy, .., Wy . Itis no commdencg that this equation
our knowledge there is no paper in psychology that claim 0oks Ilke_a_one-l_ayerneural_net_vvork (Jakel etal., 200'7()’ a
a value forp bigger than two. Thus, concentrating on the ecause itis a linear combination of kernel functions these
case wherg < 2 appears to be no serious restriction. Notefunctlons_form avectorspace. .
that the most interesting cases of the similarity kernel tha. There is a natural way t,\(,? equip this vector space W'th an
have been reported in the literature are all positive definit inner product. Leg(x) = Zizy vik(x, yi) be another function
The Laplacian kernelq(= p = 1) and the Gaussian kernel from the vector space. An inner product between these func-
(q = p = 2) are positive definite but also Shepard’s original i0NS can be defined as
suggestion withg = 1 andp = 2. N

For the rest of the paper we will concentrate on the case (f,g) =

=1

g = p and especially on the case wheare< 1 because i

M
PRALCEN! 8)

j=1



Figure L The similarity kernel for dferent values op. From left to right: Forp = 2 a Gaussian is obtained, fpr= 1 a Laplacian is
obtained, and fop = % the axes are very prominent.

This can be shown to be well-defined and it is symmetric duénas brought us back to the roots of MDS, the use of inner
to the symmetry ok. Itis linear in its arguments, too, due to products.

the linearity of the sum. To show that it is an inner product )

we need to make sure that it is also positive definite, thail he kernel metric

is (f, f) > 0 and equality only holds fof = 0. Positivity . . : . .
is guaranteed by the defining property of a positive definite . Like E_uclldean space Hilbert Spacels avery rich structure
kernelk (4). Definiteness follows automatically for positive with an inner product, a norm that is induced by the inner

definite kernels but is a bit morefficult to see (Schoélkopf & product a_nd a_metric 'ghat is induc_ed by the norm. The norm
Smola, 2002). of a functionf in the Hilbert space is naturallzy defined as the

The vector space with the inner product that we introducedduare root of the !nr]er_product with |tse|tf|| - (f, ). In
is almost a Hilbert space. Hilbert spaces can be thought d?a”'cu'a'f* for the s_|m|l_ar|ty kernel (5) all stimuli are ped
as a generalization of Euclidean spaces with a dimensidn thi° the unit sphere in Hilbert space:
may be infinite. In order to be a Hilbert space the space needs
to be complete, and the space we constructed can be com-
pleted by including certain limit points (Scholkopf & Smola
2002). This completed space is then calleteproducing
kernel Hilbert spac€RKHS). It is called “reproducing” be-
cause of the following property,

IO(X)I? = (D(x), D) = k(x, X) = exp(0)= 1.  (12)

As all the points of the input space lie on the unit sphere in
the Hilbert space the inner product is the cosine of the angle
between the vectors in the Hilbert space.
Given a norm a natural definition of a metric is the norm
N of the diference vector. In the Hilbert space the distance
(k(-, ), fy = Z wik(x, %) = f(X), (9) between two functions andg would then be given by the
— metricd, defined asl, = ||f — gll. Hence, the inner product

_ _ in Hilbert space naturally induces a metric on the space via
stating that the inner product between a functfoand one  the norm:

of the similarity functionsk(-, X) evaluates the function at

x. Hence, when we take the inner product of two similarity dy(x,y)?> = [|©(x) — O(y)|
functions
= (D(X) - O(y), D(x) - D(y))
k(5 %), k(- )y = k(X y), (10) _
the functionk(-, y) is evaluated ax. - 2-2k(xY)
Remember that in Eq. (6) we decided to map each stim- ’ 0
ulus x to the vector space by applying the functidfx) = = 2-2expldy(x.y)P) (13)

k(-,x). Because of the reproducing property (10) the inner

product of two stimulix andy in the RKHS is given by their where we h_avg used.that the S|m|lar|ty_ kerket, x) =1
similarity: for all x. It is instructive to note that this new metric is a

monotonic transform ofl,. In the Shepard-Kruskal multi-
(D(X), D(Y)) = (K(:, X), KC, )y = (X, Y). (11)  dimensional scaling procedure only ordinal propertiesief t
data are used and therefore this new metric space is as good a
Calculating the similarity between two stimuli using a pos-representation for ordinal data as tfyespace on which it is
itive definite kernek as given in (5) is therefore the same based. There are of course many more metric spaces that will
as taking the inner product in the Hilbert space that we condo the same but do not have the structure of a Hilbert space.
structed above. The similarity is given by an inner prodsct a For some metric spaces there is no monotone metric trans-
in the early work of Ekman (Ekman, 1954; Gregson, 1975;5orm such that they can be embedded into a Hilbert space, so
Borg & Groenen, 1997). Ironically, Shepard’s suggestion tait is not completely trivial to note that we can obtain a Hitbe
use the exponential as a link between distance and sirngilaritspace representation here (Lew, 1978).



Contrary tod, the new metric is bounded from above.
Points far apart in the space are separated by a distanck whi
is at mostV2. Psychologically this is an interesting property
because it means that a stimulus that is already vefgrei
ent from another stimulus cannot become much materdi
ent. In fact, very often the notions of perceptudtetience
and similarity are only meaningful locally and measureraent
of large perceptual distances are not available. An exampl
would be color space where it is easy to obtain local measure
ments of similarity, for instance by looking at discrimiiat
thresholds. However, global measures are not easily avai
able. If directly asked for a judgment of the dissimilaritly o
colors far apart in color space, typically subjects find them
selves unable to express a more precise answer than “total
different” (Indow, 1994).

Triangle inequality

N
2

With regard to modeling perceptual similarity, it may
seem that the kernel metric inherits all problems of the dis:
tanced, on which it is based. Perhaps the problems may
even seem worse because of the assumptions of the Hilbe
space—nbut this is not so. Of course, the kernel metric fsilfill
the metric axioms and they have been subject to consider- Figure 2 Unit balls of the/, norm for diferent values op.
ably criticism (Tversky, 1977). In some cases the empirical
dissimilarity from a point to itself may not be zero and the
symmetry of the dissimiliarities is not warranted. These vi greater than one and the distance frpto w is also greater
olations may not always be explained by measurement noisgaan one). Psychologically, one would expect indented iso-
and response biases. Symmetry, for example, can be vigimilarity curves if subjects based their similarity judgnts
lated if the comparison has a direction and one of the stimulon matching dimensions. In his experiments Shepard found
is more prototypical than the other, or receives more attenviolations of the triangle inequality but he could attrieut
tion. Checking for violations of symmetry is relatively gas them to pooling subjects with fierent response strategies.
and even if an experimental measure is not completely sym-

e triangle inequality (and matching behavior) more di-

metric, in practice it is often simply forced to be symmetric
i
ctly than Shepard (1964) did. Instead of assuming/the

Similarly, constant self-similarity is simply assumed ira@-

tice. In any case, whether one’s data show symmetry an

gﬁgz}(aerg S?E?Qttzrtlitg’naitsI?]?)?ts?)pgirrﬂ)p(:l??é?l¥ﬁga;ﬂ§r?§e in.norm they could devige testable predictiong_b_y only assgmin

equality 'As dissimilarity measurements are usually omly o the weaker assumption OT segmgntal add'tlv-'ty (Begls etal

an ordin.al level, at most on an interval scale, for a finiteo$et -1968; Blumenthal, 195-3-) In addition to the trlanglelmequal

points the trianéle inequality can always be ’trivially shad Ity. By seg_mental additivity the_y meant the following: Al

by adding a big enough constant to the dissimilarity meaP2""> of pointsx andz can be qued by a segment (€.g., a
y 9 9 9 Y straight line if the space is Euclidean) such that for anypoi

wthat is on the path betweeranzthe distance fronxto zis
exactly the sum of the distances fromo w and fromw to z,

surements. Hence, experimentally the triangle inequedity
d(x, 2 = d(x,w) + d(w, 2). Implicitly we made this assump-

only be tested in conjunction with additional assumptions.
Tests of the triangle inequality tion above when we demonstrated that the distaic€?)
Assuming the/, norm, Shepard noted that concave (i.e.,does not fulfill the triangle inequality fgg < 1. The assump-
indented) iso-similarity contours lead to a violation oéth tion of segmental additivity is so intuitive that if it were be
triangle inequality (Shepard, 1964). Figure 2 shows thé unigiven up the whole idea of representing similarity by geo-
“palls” for the £, norm for diferent values op assuming metric relations in a psychological space would seem to lose
equal weights for both dimensions. All points on the curvests intuitive appeal. Metrics with segmental additivityeaa
have distance one to the center (in their respective normsjather wide class of metrics. They include all Minkowski
Figure 3 shows why the triangle inequality is not fulfilled fo metrics @, with p > 1) and Riemannian curved geometries.
values ofp < 1. Forp < 1 the unit ball becomes concave. In Segmental additivity is one of the basic intuitions undiedy
this case, the distance froxtoy is one, the distance from  MDS (Beals et al., 1968) and other, more recent embedding

Tversky and Gati (1982) conducted a study that tested

to zis also one. Therefore, traveling froxto z via y takes
two units but traveling directly, that is on a straight lifrem
x to z takes more than two units (the distance framo w is

methods (Roweis & Saul, 2000; Tenenbaum, Silva, & Lang-
ford, 2000). Tversky and Gati found however that metrics
with additive segments cannot account for their data.



Figure 4 The similarity kernel maps the stimuti w andz from
Figure 3 to the unit sphere in a Hilbert space. The distare &to
zis smaller than the sum of the distances freto w and fromw to
z The metric does not have additive segments in the origjredes
because the distances are computed by the shortest cametti
Hilbert space (the dotted lines).

Figure 3  Violation of the triangle inequality for concave unit

balls. The distances from to y and fromy to z are 1. Hence, ¢ the k | tri h indented i imilarit
traveling fromx to z via y takes 2 units. Traveling from to z di- p norm, the kernel metrc can have indented Iso-similarity

rectly viaw takes more than 2 units asis outside the unit balls of CUrves and is therefore compatible with the data by Shepard
x andz. (1964) and Tversky and Gati (1982). For a metric with in-

dented unit balls it is exceedinglyfiicult to interpret a con-

figuration of stimuli as depicted in Figure 3 as a map or any
Metrics without segmental additivity other intuitive geometry, “despite the natural tendencgido

so” (Tversky & Gati, 1982, p. 151). However, as the kernel

These results have led Tversky and Gati, and many remetric is a metric that is derived from an inner product we
searchers after them, to prefer non-metric models of simila may use some of our Euclidean intuitions in its analysis.
ity. The contrast model (Tversky, 1977) is the most promi- The metricd, leads to segmental additivity in a higher
nent example. Nevertheless, Tversky and Gati do acknowldimensional space. The points in the psychological space
edge that the triangle inequality on its own is not constrain are mapped to the unit sphere in the infinite dimensional
ing the class of similarity models very much. There are manyHilbert space (12). In Figure 4 we have depicted a three
metric models without segmental additivity that can be recdimensional subspace that contains the poigtsv and z
onciled with their data, for example, the so-called “mefisic ~ from Figure 3 mapped to the Hilbert space using the map-
bounded response scales” (Borg & Groenen, 1997). Anothesing ®(x) = k(, X). The locations of the three points in the
such metric was suggested by Tversky and Gati themselveRyure are calculated from their inner products (that aremgiv
and is given by the, formula (2) taken to the power qf, by the similarity kernel) such that the distance in RKHS is
which results in a metric for & p < 1, as already noted by the same as the Euclidean distance in the three-dimensional
Carroll and Wish (1974). Tversky and Gati (1982, p. 151)space that is depicted. The metdg is the metric of the
therefore conclude that the choice between non-metric modHilbert space in which the original psychological space is
els and metrics without segmental additivity is “more likel embedded and therefore the distance between two points is
to be made on the basis of theoretical rather than empiricajiven by the chord that joins them (the dotted lines). Note
considerations”. The kernel metrit, (13) that we intro-  that in the embedding spaeeis not on the way fronx to
duced above is theoretically well-motivated by Shepasa¥is |z it even lies in a dferent dimension in Figure 4. This
and also does not fulfill segmental additivity. Thus, the-ker is because any kernel matrix for Shepard’s law will always
nel metric may provide a theoretically well-founded metric have full rank, if no two points are identical. In fact, none
alternative to the non-metric models that Tversky and Gatbf the points that lie on the chord that joirsandz can be
favor. a potential stimulus because we know that all stimuli from
Note that the exponent in the definition of the kernel (5) isthe original space lie on the unit sphere when mapped to the

the p power ofd,. The iso-similarity curves of the kernel Hilbertspace (12). Hence, segmental additivity does niot ho
metric are identical to the iso-similarity curves of thenorm  in the original psychological space which is the one degicte
(Figure 2) because the same value for fgeformula im-  in Figure 3 and also the one that Tversky and Gati examined.
plies the same distance in the kernel metric. Contrary to thé is as if you can take a shortcut through the sphere in order



to get to another stimulus. You do not have to visit any otheone could entertain, the contrast model abandons the metric
stimuli on the way. Any visit to another stimulus implies a axioms altogether and directly tries to model matching be-
detour. Hence, no two distinct pointsandz in the original  havior (Tversky, 1977).
space can be joined by an additive segment in the original Recently, Dzhafarov and Colonius (2007) have presented
space because for all other poimtsn the original space it Dissimilarity Cumulation Theory as a principled way of con-
holds thaidp(x, 2) < dp(x, W) + dp(W, 2). structing a metric from non-metric dissimilarity measure-
Normally in MDS, if the stimulus space has a smaller di-ments. The major application of this theory has been to dis-
mension than the embedding space then the stimuli that a@imination probabilities. However, also dissimilarigtings
presented to a subject will fall onto a (non-linear) subrmani of the kind considered by Tversky and Gati (1982) could po-
fold in the embedding space. The manifold has the dimententially be used in their construction (Dzhafarov & Colo-
sion of the stimulus space. A simple example for this isnius, 2007, p.291). In addition, in an earlier work (Dzha-
the color circle (Shepard, 1980). If an experimenter cheosefarov & Colonius, 2006) some of Shepard’s generalization
the one-dimensional set of stimuli that is comprised of onlygradients have been analyzed and this led to a metric with-
monochromatic lights then these stimuli will have to be em-out additive segments, consistent with the metric sugdeste
bedded on a circle in two dimensions. The distance is giveiere. Here we have somehow naively assumed that similar-
by the direct connection in the embedding space and not bigy measurements as obtained by generalization gradients o
the shortest path on the stimulus manifold (that only cassis by direct similarity ratings are monotonically related axch
of monochromatic lights). In such a case it is no surpriseother. But the link may be more complicated and perhaps
that the metric does not fulfill segmental additivity when indented iso-similarity contours only occur for direct §im
only the subset of monochromatic lights is considered. Thidarity judgments and not for generalization gradients (os
chordal metric is in fact the standard example for a metricsky, 1986). Other connections betweefiatient operational-
without additive segments (Beals et al., 1968). The kerneizations of similarity could be formalized within Dissirait
metric we have presented here is very similar to this examity Cumulation Theory. Dissimilarity Cumulation Theory is
ple, it represents each stimulus on the unit sphere in a{highalso stficiently general to be able to deal with asymmetry

dimensional) Hilbert spack. and non-constant self-similarity, both of which we have ne-
glected here.
Discussion In any case, the similarity component of many successful

categorization models does assume Shepard’s law (Nosof-

We have demonstrated how concerns about the triangleky, 1986; Kruschke, 1992; Love et al., 2004, e.g.). There is
inequality that accompany all metric models of similarity a close correspondence between kernel methods, as they are
can be addressed in a principled manner. It was importantsed in machine learning and statistics, and exemplar mod-
to remember that the experimental tests of the triangle inels of categorization (Ashby & Alfonso-Reese, 1995; Jékel,
equality that Tversky and Gati (1982) reported were alwaysScholkopf, & Wichmann, 2008). It is, in fact, this corre-
in conjunction with a second assumption: segmental additivspondence that motivated this work. One should expect that
ity. Shepard’s law of generalization can be used to inducenatching &ects like (Tversky & Gati, 1982) observed play
an inner product in a Hilbert space which in turn induces aa role in categorization, too. (Nosofsky, 1986) did not find
metric with several psychologically appealing propertikts it necessary to incorporate matchinfjeets for his highly
does not have additive segments and can be made consimnfusable stimuli. Nevertheless, it has been suggesstd th
tent with the data by Tversky and Gati by choosing concavenatching behavior should be incorporated into models of cat
iso-similarity contours. It is also bounded from above andegorization (Verguts, Ameel, & Storms, 2004). This can be
captures the intuition that similarity makes the most senselone in exemplar models by settipg< 1. If pis simply seen
locally with only small changes in the stimulus. Stimuli far as a free parameter of the exemplar model it will be hardly
apartin perceptual space are merely completdfgdintand  surprising that this can be done. However, it is perhaps-inte
more precise judgments of similarity ardfifiult. esting to note that it can be done without giving up the metric

There are other ways to address concerns about the tréxioms.
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